CS 383

HW 8

Due on the last day of classes: Thursday, December 12.

- 1. Alan Turing was interested in modeling computations rather than accepting/rejecting inputs. His TMs had no Accept state. Given an input they either halted (which is good) or ran forever. So let $\mathcal{L}_{halt} = \{(M,w) \mid M \text{ is a TM that halts (whether or not in a final state) on input w}$ If you prefer you can write this as $\{m1111w \mid m \text{ is the encoding of a TM that halts on input w}\}$. Show that \mathcal{L}_{halt} is recursively enumerable but not recursive.
- 2. We showed that if a language and its complement are both RE then both are recursive. Suppose we have 3 recursively enumerable languages that are disjoint (no string is in two of them) and whose union is the set of all strings. Show that all three must be recursive.
- 3. Suppose \mathcal{L}_1 and \mathcal{L}_2 are both recursively enumerable. Is the concatenation $\mathcal{L}_1\mathcal{L}_2$ RE? Why or why not?
- 4. We know \mathcal{L}_{ne} is recursively enumerable but not recursive. Let \mathcal{L}_{2ne} be {m | m encodes a TM that accepts at least 2 strings} Rice's Theorem says \mathcal{L}_{2ne} is not recursive. Is it recursively enumerable? Why or why not?
- 5. Let \mathcal{L}_{inf} be {m | m encodes a TM that accepts infinitely many strings}. Is \mathcal{L}_{inf} RE?
- 6. Let $\mathcal{L}_{hippy-dippy}$ be the set of encodings of Turing Machines that accept all strings. Our friend Happy (actually, his encoding) is a member of $\mathcal{L}_{hippy-dippy}$. The complement of $\mathcal{L}_{hippy-dippy}$ is $\mathcal{L}_{skeptical}$, the set of Turing Machines for which there is at least one string the machine fails to accept. Rice's Theorem tells us that neither of these sets is Recursive.
 - a. Prove that $\mathcal{L}_{hippy-dippy}$ is not Recursively Enumerable. You might try reducing the complement of the halting language from Question 1 to $\mathcal{L}_{hippy-dippy}$.
 - b. Either prove that $\mathcal{L}_{skeptical}$ is Recursively Enumerable or prove it isn't.